Sampling latent states for high-dimensional non-linear state space models with the embedded HMM method

نویسندگان

  • Alexander Y. Shestopaloff
  • Radford M. Neal
چکیده

We propose a new scheme for selecting pool states for the embedded Hidden Markov Model (HMM) Markov Chain Monte Carlo (MCMC) method. This new scheme allows the embedded HMM method to be used for efficient sampling in state space models where the state can be high-dimensional. Previously, embedded HMM methods were only applied to models with a one-dimensional state space. We demonstrate that using our proposed pool state selection scheme, an embedded HMM sampler can have similar performance to a welltuned sampler that uses a combination of Particle Gibbs with Backward Sampling (PGBS) and Metropolis updates. The scaling to higher dimensions is made possible by selecting pool states locally near the current value of the state sequence. The proposed pool state selection scheme also allows each iteration of the embedded HMM sampler to take time linear in the number of the pool states, as opposed to quadratic as in the original embedded HMM sampler. We also consider a model with a multimodal posterior, and show how a technique we term “mirroring” can be used to efficiently move between the modes. We show that the embedded HMM sampler with mirroring performs significantly better for this multimodal example than a sampler combining PGBS and Metropolis updates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inferring State Sequences for Non-linear Systems with Embedded Hidden Markov Models

We describe a Markov chain method for sampling from the distribution of the hidden state sequence in a non-linear dynamical system, given a sequence of observations. This method updates all states in the sequence simultaneously using an embedded Hidden Markov Model (HMM). An update begins with the creation of “pools” of candidate states at each time. We then define an embedded HMM whose states ...

متن کامل

Markov Chain Sampling for Non-linear State Space Models Using Embedded Hidden Markov Models

Abstract. I describe a new Markov chain method for sampling from the distribution of the state sequences in a non-linear state space model, given the observation sequence. This method updates all states in the sequence simultaneously using an embedded Hidden Markov model (HMM). An update begins with the creation of a “pool” of K states at each time, by applying some Markov chain update to the c...

متن کامل

MCMC for non-linear state space models using ensembles of latent sequences

Non-linear state space models are a widely-used class of models for biological, economic, and physical processes. Fitting these models to observed data is a difficult inference problem that has no straightforward solution. We take a Bayesian approach to the inference of unknown parameters of a non-linear state model; this, in turn, requires the availability of efficient Markov Chain Monte Carlo...

متن کامل

Tracking Human Body Pose on a Learned Smooth Space

Particle filtering is a popular method used in systems for tracking human body pose in video. One key difficulty in using particle filtering is caused by the curse of dimensionality: generally a very large number of particles is required to adequately approximate the underlying pose distribution in a high-dimensional state space. Although the number of degrees of freedom in the human body is qu...

متن کامل

Hilbert Space Embeddings of Hidden Markov Models

Hidden Markov Models (HMMs) are important tools for modeling sequence data. However, they are restricted to discrete latent states, and are largely restricted to Gaussian and discrete observations. And, learning algorithms for HMMs have predominantly relied on local search heuristics, with the exception of spectral methods such as those described below. We propose a nonparametric HMM that exten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016